Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy
نویسندگان
چکیده
Fast detection of toxic metals in crops is important for monitoring pollution and ensuring food safety. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the chromium content in rice leaves. We investigated the influence of laser wavelength (532 nm and 1064 nm excitation), along with the variations of delay time, pulse energy, and lens-to-sample distance (LTSD), on the signal (sensitivity and stability) and plasma features (temperature and electron density). With the optimized experimental parameters, univariate analysis was used for quantifying the chromium content, and several preprocessing methods (including background normalization, area normalization, multiplicative scatter correction (MSC) transformation and standardized normal variate (SNV) transformation were used to further improve the analytical performance. The results indicated that 532 nm excitation showed better sensitivity than 1064 nm excitation, with a detection limit around two times lower. However, the prediction accuracy for both excitation wavelengths was similar. The best result, with a correlation coefficient of 0.9849, root-mean-square error of 3.89 mg/kg and detection limit of 2.72 mg/kg, was obtained using the SNV transformed signal (Cr I 425.43 nm) induced by 532 nm excitation. The results indicate the inspiring capability of LIBS for toxic metals detection in plant materials.
منابع مشابه
Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy
a r t i c l e i n f o Keywords: LIBS Double pulse LIBS Plasma diagnostics LPP Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In p...
متن کاملتعیین عناصر موجود در برخی گونه های برنج ایرانی با استفاده از روش بینابنمایی فروشکست القایی لیزری
Background and purpose: Cereals are the most important components of a healthy diet. Rice is one of the most common consumed grains in the world and a staple food of people in everyday meals. This study aimed at introducing a novel analytical approach in investigation of harmful metals and necessary elements in some types of Iranian rice by using Laser Induced Breakdown Spectroscopy (LIBS) meth...
متن کاملOptical Opacity of Laser Induced Plasma in Distilled Water with NaCl and TiO2 Nanoparticles Impurities
In this paper, the dynamic behavior of laser induced optical breakdown in impure water was studied by using a pump- probe technique. The plasma was induced by a 1064 nm Nd:YAG laser pulse (with pulse duration ~10 ns) in distilled water with two types of impurities: (I) a solution (highly diluted salt water as a conductor) and (II) a colloidal (TiO2 in colloidal nanoparticle form as a dielectric...
متن کاملLaser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis
Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was develop...
متن کاملOPTIMIZATION OF LASER PROCESSES IN n EMITTER FORMATION FOR c-Si SOLAR CELLS
Punctual phosphorus diffused emitters were achieved by laser patterning phosphorus doped a-SiCx:H films deposited by PECVD as a doping source. Two different lasers at wavelengths of 1064 nm and 532 nm were used. Phosphorus diffusion was confirmed by Secondary Ion Mass Spectroscopy. We explored the effect of pulse energy and number of pulses per diffused point. The results show that a fine tune ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018